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Widespread  use  of titania  nanoparticles  (TNPs)  has  caused  a significant  release  of  TNPs  into  the  environ-
ment,  increasing  human  exposure  to TNPs.  The  potential  toxicity  of  TNPs  has  become  an  urgent  concern.
Various  models  have  been  used  to  evaluate  the toxic  effects  of TNPs,  but  the  relationship  between  TNPs’
toxicity  and  physicochemical  properties  is  largely  unknown.  This  review  summarizes  relevant  reports
vailable online 11 November 2011
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to  support  the  development  of better  predictive  toxicological  models  and  the  safe  future  application  of
TNPs.

© 2011 Elsevier B.V. All rights reserved.
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. Introduction

Titania (titanium dioxide) has three natural forms: rutile,
natase, and brookite [1,2]. Titania nanoparticle (TNP) is a widely
sed nanomaterial; cosmetics and sunscreen products alone
ccount for 50% of TNP usage [3].  Because they are an n-type
emiconductor [4],  TNPs are also used as a photocell coating and
s a photo-catalyst to reduce waterborne or airborne pollutants
uch as organic dyes, nitric oxide, organophosphorus insecticides,
ormaldehyde, and benzene [3,5,6].  TNPs have been added to self-
leaning sanitary ceramics, antimicrobial plastic packaging, and
ement. Because light-mediated TiO2 surface hydroxylation makes
t fouling-resistant, it is used in window glass, pavement, and walls
7–9]. TNPs have also been used as additives in sugar, film, tooth-
aste, and capsules [10].

Although limited epidemiological studies in U.S. and European
NP production factories showed no significant respiratory car-
inogenic risks [11–14].  TNP toxicity has been observed in diverse
odels, such as rodents [15–18],  aquatic organisms [19–21],  and

uman cells [22–24].  Female workers were reported to experi-
nce shortness of breath and pleural effusions after 5–13 months
f exposure in a polyacrylic ester nanoparticle processing factory
25], raising significant doubt about the human safety of TNPs.

Because of widespread environmental exposure to TNPs, it
s urgent to elucidate their effects on human health. Currently
vailable reports cover a diverse range of nanoparticle properties,
xposure schemes, and toxicological models, impeding clear inter-
retation. Here we summarize the likely scenarios of TNP release
nd human exposure and compare the potential in vivo and in vitro
oxic effects of TNP in association with its properties. Rather than
eing exhaustive, this review seeks to promote scientific awareness
f the potential risk of TNPs. Our hope is to stimulate the develop-
ent of guidelines for the proper use and disposal of TNPs, thereby

educing its potential harm to human health and the environment
7].

. TNP production and pollution

In 2006, 40,000 tons of TNPs were produced in the U.S.[26]. Due
o ever-increasing market demand, the annual production of TNPs
s predicted to reach 2.5 million tons by 2025 (Fig. 1) [26]. As a result,

 significant amount of TNPs will be released into the environment
7,27] (Fig. 2).

TNPs distributed in the environment may  affect the biosphere

ia food chain, air, and water [28]. Workers at TNP production fac-
ories and academic researchers encounter the highest exposure
isks, possibly through skin penetration and inhalation. Material
ispersal cannot be avoided during application, leading to free

Fig. 1. Forecast of TNP production in the U.S. (MT  = metric tons).
eproduced with permission from [26].
terials 211– 212 (2012) 404– 413 405

nanomaterial liberation. Data from a wastewater treatment plant
showed raw sewage to contain 100–3000 �g Ti/L and effluent to
contain 5–15 �g/L Ti [29]. Although many countries regulate solid
waste disposal, none specifically addresses nanoparticle disposal
[30]. Therefore, the nanoparticle pollution risk is eminent and can-
not be ignored.

3. Potential toxicity of TNPs

Although TNP is classified as a suspected carcinogen [12], a
retrospective cohort mortality study revealed no significant asso-
ciation between mortality risk and TNP exposure levels [13].
However, workers who  manufacture polyacrylic ester nanopar-
ticles developed symptoms such as shortness of breath, pleural
effusions, and rash with intense itching on their faces, hands, and
forearms. Some even experienced hypoxemia and pericardial effu-
sions [25]. Because of the limited data on TNP toxicity to humans,
the potential risk is still in doubt. Therefore, researchers should use
various toxicological models, such as animals, aquatic organisms,
and human cells, to generate the needed information.

3.1. Toxicity of TNPs to mammals

TNP’s mammalian toxicity was investigated using rodent mod-
els under various exposure schemes and conditions. The endpoint
assays included inflammation, oxidant stress, cell proliferation, and
histopathological changes [30].

3.1.1. Biodistribution and systemic toxicity
After a single intravenous (iv) injection of TNP in male Wistar

rats with TNP suspension (5 mg/kg body weight), various organs,
biochemical indices, and antigen levels were analyzed after 1, 14,
and 28 days. At day 28, TNPs had accumulated in liver, spleen,
lung, and kidney, in descending order. No obvious abnormality was
observed in immune response and organ function. Hence, brief,
low-dose TNP exposure was  relatively safe [15]. Toxicokinetics of
TNPs at a higher dose was  studied in Balb/c female mice treated (iv)
with 560 mg/kg TNP. TNP microparticle aggregates were found in
lung, liver, lymph node, spleen, and kidney [31]. In an investigation
of the acute toxicity and biodistribution of fine and ultrafine TiO2 at
a larger dose (5 g/kg BW by oral gavage), TNPs were transported to
other organs and tissues via the gastrointestinal tract and induced
hepatic injury and myocardial damage within 2 weeks [32]. ICR
mice were treated with anatase TNPs by intraperitoneal (ip) injec-
tion daily for 45 days. TNPs accumulated in the spleen and other
organs, and reduced immunity and pathological changes were
observed [18]. These studies show a general pattern of transloca-
tion and biodistribution of TNPs that is illustrated in Fig. 3 [33].
All of the different exposure routes lead to blood entrance and
translocation into various organs. Systemic toxicity is therefore a
possibility.

3.1.2. Respiratory system
Exogenous fine particles enter the body mainly via the respi-

ratory system, after which phagocytosis by alveolar macrophages
induces reactive oxygen species (ROS) [34]. Alveolar macrophages
usually contain enzymatic and non-enzymatic antioxidants that
scavenge ROS; however, these are insufficient to prevent oxidative
stress and pulmonary damages [35,36].  TNPs have been found to
cause pulmonary damage and inflammation [37,38].  Acute expo-
sure to TNP rods and dots for 24 h caused pulmonary and cardiac
edema, lung and systemic inflammation, and platelet aggregation

[39,40]. Levels of inflammation and oxidative stress were exacer-
bated when TiO2 was coated with Fe. The coated TNPs increased the
risk of hepatic injury, thrombus, tachycardia, and systolic hyperten-
sion and induced splenic congestion, lymph nodule proliferation,
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Fig. 2. Potential release, exposure, and uptake of TNPs i
eproduced with permission from [27].

nd splenocyte apoptosis [41,42]. In another study, treatment of
emale mice with TNPs (5 g/kg) by oral gavage caused hepatic
njury, nephrotoxicity, and pathological changes in the kidneys
32].

.1.3. Skin
TNPs are widely used in sunscreens, cosmetics, and even clothes

o provide protection from harmful UV irradiation. These appli-
ations cause general skin exposure, posing the potential risk of
ercutaneous absorption and ROS-mediated skin aging [43–48].
kin is the body’s first line of defense from the outside world. Skin
air follicles are surrounded by a tight network of capillaries (Fig. 4),
hich facilitates transdermal drug delivery [49] but also provides a

ossible route for NP entry and a long-term NP reservoir. Although
nly 1% of applied TNPs were found in the orifices of hair folli-
les, these deposits were much harder to remove than those on
he skin surface [45–48].  The stratum corneum (the upper layer of

ig. 3. Kinetic properties of NPs in the body. The internal exposure is the portion of the 

outes  of nanoparticles; dashed lines represent hypothetical routes. (Other organs = splee

eprinted with permission from [33].
ecosystem (1) inhalation; (2) ingestion; (3) deposition.

epidermis) shields against percutaneous penetration by most
extraneous substances [50], but TNPs were shown to penetrate the
stratum corneum and the stratum granulosum in pigs [44]. So far,
there is no evidence that NP skin penetration leads to systemic
exposure. Most studies have found that TNPs remain at the outmost
layer of stratum corneum, possibly in skin furrows or the infundibu-
lum; little TNP has been found in the living epidermis [49,51–56].
Moreover, acute dermal irritation studies and local lymph node
assays in mice found no irritation or sensitization [57]. Recently,
TNPs were found to induce ROS and skin aging after prolonged
exposure, especially under illumination [43]. Treatment of human
keratinocyte HaCaT cells with low-dose TNPs (<60 �g/mL) for 24 h
altered cell-matrix adhesion but did not affect cell viability [58].

In contrast, ROS induced dose- and time-dependent apoptosis at
a higher concentration of TNPs [59] and induced DNA damage and
micronuclei in epidermal cells [60]. Photo-irradiation increased the
level of ROS and decreased cell viability [61]. ROS-mediated protein

external dose that enters the systemic circulation. Black lines represent confirmed
n, heart, reproductive organs, etc.)
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Fig. 4. Skin structure diagram.
A

t
a
n
p
e
s

3

r
v
b
N
a
o
c
a
T
a
i
t
a
e
t
c
o
e
o
t
(
I
w
p

tathione (GSH), and eventually, cell death [89]. TNPs were also
dapted from [125].

yrosine nitration was also observed in mouse skin homogenate,
lthough the relation of this finding to chronic cutaneous diseases
eeds further study [62]. Considering the aging risks posed by
hoto-induced oxidative stress and the lack of data on long-term
ffects on mammalian skin, further investigation of TNP-induced
kin alteration is warranted.

.1.4. Brain and CNS
Because of its high metabolic rate, low capacity for cellular

egeneration, and numerous cellular ROS targets, brain is highly
ulnerable to oxidative stress. The olfactory nerve is speculated to
e the most likely pathway for the transport of intranasally instilled
Ps to the brain [30,63,64].  High accumulation, oxidative stress,
nd obvious morphological alteration of hippocampal neurons and
lfactory bulb were detected after nasal exposure to TNPs [65]. In
ontrast, TNPs induced only a slight brain lesion after oral gav-
ge [32]. The hippocampus was recognized as the main target for
NPs introduced through the olfactory bulb route. TNPs exhibited

 time-dependent translocation capacity in CNS after intranasal
nstillation [66]. Further studies indicated that TNPs could reduce
he spatial recognition memory ability of mice. This finding was
ttributed to the disturbance of homeostasis of trace elements,
nzymes, and neurotransmitter systems [67]. TNPs were also able
o translocate from the abdominal cavity to the brain and then to
ause brain injury and a cascade of reactions, such as lipid per-
xidation, excessive release of nitric oxide, reduced antioxidative
nzyme activity, reduction of glutamic acid, and down-regulation
f acetylcholinesterase activity [68]. Exposure to TNPs enhanced
he expression of tumor necrosis factor alpha (TNF-�), interleukin
IL-1�), factor-�B-inducible kinase, nucleic factor-�B (NF-�B), and

�B kinase in a dose-dependent manner, while expression of I�B

as down-regulated [67–69].  Taken together, the evidence sup-
orts concern about the potential neurotoxicity of TNPs.
terials 211– 212 (2012) 404– 413 407

3.1.5. Developmental toxicity
During early fetal development, blood barriers are incomplete

and hazardous substances can easily gain entry and cause injury
[70]. In fact, TNPs were shown to be transferred from pregnant
mice to their pups [70–73].  When pregnant mice were treated with
TNPs via subcutaneous injection, the genital and cranial nerve sys-
tems of the male offspring were affected [70]. When time-mated
female mice were treated with TNPs, their offspring showed mod-
erate neurobehavioral alterations, although cognitive function was
not affected [71]. This finding can be explained by changes in the
expression of genes associated with CNS development and function
[72]. Maternal intranasal instillation with respirable TNPs increased
allergic susceptibility [73] and caused pathologic and functional
disorders and reduced daily sperm production in offspring [70].

3.2. TNP toxicity to organisms in the ecosystem

Environmental release of TNPs may  pose a significant risk to life
within the ecosystem, such as algae, zooplankton, bacteria, and fish
[74,75]. TNP aggregation status and abiotic factors, such as ionic
strength and pH, affect TMP  ecotoxicity [75]. The TNP EC50 for the
green alga Desmodesmus subspicatus was  44 mg/L, showing TNP to
be more toxic than bulk TiO2 [74]. Concentrations of TNPs above
100 mg/L, which was  considered nontoxic, were toxic to fish and
bacteria [21]. The LC50 of filtered titania solution to the zooplankton
Daphnia magna was  5.5 mg/L for 48 h of exposure [19], and the mor-
tality was over 70% with chronic exposure [76]. In another study,
the viability of Daphnia magna was reported to be significantly
affected, while the crustacean Thamnocephalus platyurus was not
affected under the same conditions [77]. Although TNPs showed
only slight effects on D. magna mortality, its reproduction was
severely affected by chronic exposure [78]. The ecotoxicity of TNP
is ROS-mediated damage to organisms induced by TNP accumula-
tion, disruption of membranes, and other oxidative stress responses
[76,79]. TNP micelles or protein-coated TNPs were easily internal-
ized by Salmonella typhimurium [80]. Moreover, TNP penetrated
multilayered membranes of Anabaena variabilis and caused oxida-
tive structural membrane damage [81,82].  Consistent with the
protective enzymes inhibited, TNP induced oxidative stress, DNA
damage and cytotoxicity in Escherichia coli [82] and illumination-
enhanced ROS-mediated acute toxicity in daphnids [83].

In summary, TNP is classified as a harmful material that presents
a low risk to the ecosystem [84]. However, despite low or moderate
toxicity in short-term evaluations, long-term TNP exposure showed
greater risks [76]. Rainbow trout treated with 1 mg/L of TNPs for
14 days showed pathologic alterations in the gills (edema and
thickening of gill lamellae) as well as oxidative stress, dose/time-
dependent inhibition of growth, and changes in Cu and Zn levels
in tissues [85]. Further, TNPs have a stronger adsorptive capac-
ity for metal ions (e.g., Cu, Cd) than do sediment particles [86,87].
In carp, for example, the presence of TNPs significantly enhanced
accumulation of toxic metal ions in the viscera and gills [87]. Fur-
thermore, TNPs passed through the blood–heart/brain barriers [88].

3.3. Toxicity of TNPs to mammalian cells

Both cytotoxicity and animal models are used to evaluate the
potential toxicity of nanomaterials. When human bronchial epithe-
lial cells (BEAS-2B) were incubated with TNPs, the aggregated
TNPs penetrated into the cytoplasm and were observed surround-
ing the nucleus. They induced an increase in ROS, expression
of the oxidative stress-related genes, a decrease in reduced glu-
reported to induce mitochondrial dysfunction [90]. Cellular uptake
and cytotoxicity of TNPs of various shapes were studied in Hela
cells. The zero-dimensional (0D) nanodots and 1D nanorods were
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nternalized after a 24-h incubation, while little of the 3D aggre-
ates was taken up [61]. Cell viability was 80% after treatment
ith 0D TNPs at and 100% after treatment with 1D and 3D

NPs, all at 125 �g/mL. However, viability after treatment with
D nanorods decreased by 40% under irradiation, indicating
eneration of ROS and increased apoptosis [61]. Anatase TNPs
LC50 ∼ 3.6 �g/mL) were more toxic than rutile (LC50 ∼ 550 �g/mL)
NPs to human dermal fibroblasts [23]. At a non-cytotoxic concen-
ration (2.5–120 ppm) of P25, brain microglia (BV2) showed a rapid
nd sustained oxidative stress response and impaired mitochon-
rial energy production [24]. Human lymphoblastoid cells were
ffected by TNPs in a time- and dose-dependent manner. How-
ver, most of the cells recovered after removal of the nanoparticles
91].

TNPs were reported to induce cell apoptosis and necrosis [92].
utile TNPs induced apoptosis through ROS generation [59], while
natase TNPs caused necrosis by inducing membrane leakage [93].
NPs induced mitotic perturbation, DNA damage, formation of
icronuclei (MN), and eventually, apoptosis in Syrian hamster

mbryo cells [94]. In mitochondrially mediated splenocyte apopto-
is, TNPs activated caspases 3 and 9, down-regulated expression
f Bcl-2 member genes and proteins, and up-regulated expres-
ion of Bax and cytochrome c genes and proteins [18]. TNP altered
ellular signaling pathways and induced cellular stress and inflam-
atory responses. In a study of TNP-induced neuroinflammatory

esponses, TNPs elevated TNF-� gene expression and activated
�B kinase (NIK), IKK1, and IKK2, eventually causing neuroin-
ammation and impairment of cognitive function and spatial

emory [66,67,69].  TNPs also triggered both chronic inflammation

nd a change in autoimmunity. After intratracheal instillation of
NPs, mice showed inflammation and increased pro-inflammatory
ytokines and proteins in the lung [95].

ig. 5. Hypothetical cellular interactions of TNPs, with emphasis on potential oxidative st
nduce  lipid peroxidation, intracellular oxidative stress, and increased cytosolic calcium io
caveolae, clathrin-coated pits, or receptor-mediated mechanisms). In phagocytic cells, ph
nd  their associated metals, as well as oxidative stress, can activate the EGF receptor. (D) Ox
f  pro-inflammatory genes via transcription factors such as NF-�B. NPs may  enter the cell b
nd  (F) disrupt normal electron transport, leading to oxidative stress. (G) Free particles ma
aterial. (H) Lipid peroxide-derived products such as 4-hydroxy nonenal form DNA addu

eceptor).

eproduced with permission from [126].
aterials 211– 212 (2012) 404– 413

TNPs can potentially induce genotoxicity and carcinogenic-
ity. Anatase TNPs cause dose-related oxidative DNA damage and
micronucleus (MN) formation in A431 and BEAS 2B cells [60,96],
as well as sister chromatid exchange at a higher dosage [97].
IMR-90 cells were more sensitive to TNP, showing genotoxicity
(ROS-induced DNA adduct formation) [98]. In HepG2 cells, DNA
breakage and oxidized purines were found, accompanied by acti-
vation of p53 and its downstream DNA damage response genes
[99]. Mice given drinking water containing TNPs for five days expe-
rienced the formation of 8-hydroxy-2′-deoxyguanosine, �-H2AX
foci, micronuclei, DNA deletions, and DNA double-strand breaks
[100]. TNPs inserted into DNA base pairs or directly bound to DNA
nucleotides and altered DNA conformation [101]. Anatase TNPs at
a dose of 150 mg/kg caused liver DNA cleavage in mice [101]. Fur-
thermore, TNP exposure in utero increased the number of DNA
deletions in the fetus [100]. Cellular ROS and apoptosis were not
observed when human keratinocyte HaCaT cells were treated with
TNPs. However, genes related to inflammatory response and cell
adhesion were up-regulated [58].

Although TNPs cause inflammation, cell death, and genotoxicity
via different signaling routes (as proposed in Fig. 5), they exert two
basic mechanisms of toxicity: (1) toxicity induced by ROS-mediated
inflammatory reaction and (2) direct toxicity caused by interaction
with biomolecules, such as DNA and pepsin. Current studies focus
on the former mechanism, while the latter is more fundamental
and less well elucidated.

4. Challenges in evaluating TNP’s nanotoxicity
The inconsistent reports about TNP toxicity reflect the over-
all complexity of evaluating nanotoxicity. First, the toxicity of
NPs depends on a large number of NP-related properties, such as

ress-induced effects and their consequences. (A) Particle-associated characteristics
n concentration. (B) NPs may  undergo active endocytosis via different mechanisms
agocytosis triggers activation of NADPH oxidase and generation of ROS. (C) Particles
idative stress, receptor activation, and increased calcium ions activate transcription
y passive diffusion, remain non-membrane bound, and then (E) enter mitochondria
y also enter the nucleus via the nuclear pore complex and interact with the genetic
cts that may  cause genotoxicity and mutagenesis (EGFR, epidermal growth factor
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he material, crystal form, size, shape, surface area and proper-
ies, aggregation status, and impurities [102,103],  which are not
omprehensively characterized in most published reports. Second,
oxicological animal models are crucial to such evaluations, but
here may  be inter-species differences in toxic effects, and none
f the models can predict human toxicity with certainty. Cell lines
re even more variable, resulting in inconsistent reports from dif-
erent labs using the same cell line. Third, experimental conditions
re highly variable among labs, and results cannot be meaningfully
ompared when parameters like dose, exposure time, endpoint
ssay, and evaluation model differ.

.1. Evaluation model and experimental conditions

Contradictory results are often obtained from different exper-
mental species. For example, when the subchronic pulmonary
esponses of different rodent species to inhaled TNPs were inves-
igated, rats showed more severe and persistent inflammation
han did mice and hamsters, although the lung burden was equal.
umors developed in rats but not in mice [16,17,104].

Nanoparticles usually exert classic dose-dependent effects that
re enhanced with exposure time [19,23,39].  Dose-dependent alve-
lar proteinosis, collagenized fibrosis, thickened alveolar walls
mpairing oxygen diffusion, cholesterol granuloma formation, and
ocal pleurisy have been observed in rats exposed to TNPs [40,105].

In toxicological evaluations, the effects of a single dose cannot
ruly recapitulate the effects of environmental exposure to nano-

aterials. When ICR mice were intraperitoneally injected with
natase TNPs (5, 10, 50, 100, and 150 mg/kg body weight) for
4 consecutive days, the LD50 was 150 mg/kg and inflammatory
esponses were generated. TNPs accumulated in various organs in
he order of liver > kidney > spleen > lung > brain > heart [18]. When

ice were treated with a lower dose of TNPs, little pathological
hange was observed. However, when mice were treated with a
igher dose, liver, kidney, and myocardium were seriously dam-
ged. The balance of blood glucose and of lipids was also perturbed
106].

The route of administration also makes a difference. When TNPs
ere injected subcutaneously, NPs were found in liver, lymph
odes, and spleen. In contrast, when TNPs were injected intra-
enously, they were found in lung and kidney [31].

.2. Effects of TNP physicochemical properties on its toxicity

.2.1. Primary size
Size is widely considered a primary factor in nanotoxicity

39,107–110]. Exposure to NPs was reported to induce greater
nflammation than exposure to larger particles with identi-
al chemical composition and mass concentration [30,111–115].
OS-mediated membrane breakdown and metabolic pathway
lterations induced by TNPs were size-dependent [94]. In a pul-
onary toxicity evaluation of instilled TNPs of different primary

izes, the smaller particles were found to induce more severe
nflammation in the short term [110]. In lungs, the likelihood
hat NPs would escape alveolar macrophage phagocytosis was
ighly and inversely related to size. Consequently, smaller NPs
ay  be substantially more likely to translocate from the alveolar

pithelium to pulmonary interstitial sites, leading to inflammation
30,109,113].

Conflicting data showing that particle size is not related to

nflammatory potential has also been reported [22,23,39,57,102].  It
s likely that the factors involved in nanotoxicity are complex and
nteractive. These include pharmacokinetic properties and aggre-
ation status, which are also important and cannot be ignored.
terials 211– 212 (2012) 404– 413 409

4.2.2. Crystal form
In a cytotoxicity study, anatase TiO2 was found to be 100 times

as toxic as an equivalent sample of rutile TiO2, and the cytotoxic
effects of mixed anatase/rutile TiO2 were intermediate. The more
cytotoxic crystal form tends to be more active in generating ROS
[23]. In a study of the dependence of membrane LDH leakage and
ROS generation on TNP crystal structure, LDH leakage was associ-
ated with cell necrosis and was induced by anatase TNPs without
ROS generation. In contrast, the rutile TNPs stimulated a relatively
high level of ROS, which eventually induced apoptosis. Hence, it
was  concluded that anatase TNPs mediated necrotic cell death,
while rutile TNPs induced apoptosis [93]. Three forms of TNPs
were intratracheally instilled in rats, with quartz used as control.
The levels of lung inflammation, cytotoxicity, cell proliferation,
and histopathological changes were presented as quartz > 80/20
anatase/rutile (uf-3) > fine rutile = ultrafine rutile (uf-1/uf-2). The
different responses to uf-3 versus uf-1 and uf-2 TNPs can be
attributed to their crystal forms [57]. Similar results have also been
achieved by investigating three different crystal forms of TNPs with
similar size distributions. The results showed that particle surface
reactivity plays a more important role in toxicity than particle size
or surface area [102]. In contrast, another study found that anatase
TiO2 did not induce greater ROS generation and that viability did not
differ significantly in cells treated with anatase, rutile, and mixed
crystal TNPs [93].

4.2.3. Aggregate size
NPs are often described by their primary sizes. Such descrip-

tions become insufficient when discussing the biological effects of
NPs, which also depend on the aggregate size of the NPs in vari-
ous biological fluids. The aggregate size of NPs is influenced by the
ionic strength of the solution. TNPs with a diameter of 100 nm can
form aggregates of microsize in high-ionic strength solutions (e.g.,
PBS). High ionic strength reduces the thickness of the electric dou-
ble layer surrounding the charged NPs and shields the electrostatic
repulsion between NPs, resulting in aggregation. In the absence of
special modifications, TNPs would be expected to aggregate in body
fluids, according to dynamic light scattering results [31]. For exam-
ple, the average diameter of Degussa P25 measured by dynamic
light scattering was 542 nm in de-ionized water and 3500 nm in
DMEM,  while its primary size was  approximatly 26 nm [110]. There
is no discernable relationship between agglomeration size, primary
size, and crystalline structure. After cellular uptake, most TNPs are
localized in endosomes [116,117] and lysosomes, while some are
localized in cytoplasm [60,118] or in the peri-nuclear region [89,98]
and may even penetrate into the nucleus after prolonged incuba-
tion [60,116]. The extent of TNP uptake can be diverse, depending
on cell line species, TNP physicochemical properties, incubation
time, and the assays used [119]. TNPs with the same aggregate size
and crystal structure but with different primary sizes differed in
their cytotoxicity [93]. This size-dependent cytotoxicity has also
been observed in other NPs [112–114]. Therefore, both the particle
aggregate size and the primary size should be considered in evalu-
ating size-dependent toxicity. However, the size-dependent effects
were not confirmed in vivo in groups of rats dosed with different
agglomerations of TNPs of equal primary size [110].

4.2.4. Surface coating
Surface coating may  play a significant role in determining cyto-

toxicity. Chitin–chitosan/nano TiO2 composite scaffolds have good
biocompatibility with bone tissue [120]. Nonetheless, surface coat-
ing on NPs can dramatically alter their risk potential. Treatment of

human macrophages and fibroblasts with SiO2-coated rutile TNPs
caused increases in pulmonary neutrophilia, tumor necrosis factor-
alpha (TNF-a), and neutrophil-attracting chemokines CXCL1 and
CXCL8. However, these changes were minimal when cells were



410
R

.
 Zhang

 et
 al.

 /
 Journal

 of
 H

azardous
 M

aterials
 211– 212 (2012) 404– 413

Table 1
Factor analysis studies of toxicity based on the inherent physicochemical properities of TNPs.

Study type Material/characteristics Animal/cell Treatment Factors in TNPs induced toxicity Ref.

Route Duration Dose/
concentration

Primary
size

Aggregation Surface
area

Crystal
structure

Surface
chemical
reactivity

Coating pH

In vivo TNPs (5 nm,  21 nm,
50 nm)

Sprague-
Dawley
rats

it Single dose 0.5, 5,
50 mg/kg BW

+ [106]

In  vivo R-TNPs (uf-1, uf-2); R
fine-TiO2 (F-1);
A/R ∼ 80/20 P25 (uf-3)

IGS BR rats it Single dose 1 or
5  mg/kg BW

+ + + [57]

In  vivo Fine TiO2 (382 nm);
R-TNPs (149 nm); A/R
TNPs (129 nm); fine
quartz (534 nm); nano
quartz (12 nm)

IGS BR rats it Single dose 1 or
5  mg/kg BW

– – + [102]

In  vivo Fine TiO2 (R, 300 nm);
TNP rods (A,
200 nm × 35 nm); TNP
dots (A, 10 nm)

IGS BR rats it Single dose 1 or
5  mg/kg BW

– – [39]

In  vivo TiO2 particles (5, 23,
and 154 nm)

CD (SD) rats it Single dose 5 mg/k BW + [110]

In  vivo TNP (3 nm,  20 nm)  Kunming mice it Single dose 0.4, 4,
40 mg/k BW

– – – + [124]

In  vitro A, A/R, R, Degussa TNPs
(3–5 nm)

Human dermal
fibroblasts and
lung epithelial
cells

24 h 0.1 �g/Ml–
100 mg/mL

– – + [23]

In  vitro 100% A (6.3, 10, 50,
100 nm); 40% A and
60% R (39 nm); 61% A
and R (39 nm);
amporphous (40 nm);
100% R (51 nm);
Degussa P25 75% A and
25% R (26 nm);
Ruthenium TiO2 100%
A (40 nm)

HEL-30 mouse
keratinocyte
cell line

24 h 0, 10, 25, 50,
100, and
150 �g/mL

+ + + [93]

In  vivo R-TiO2 (80 nm)  and
A-TiO2 (155 nm)

CD-1(ICR)
female mice

it Every other day
for 30 days

500 �g/mouse + [66]

In  vivo Commercial TiO2

materials: R (initial
size < 5 �m);  nano
(∼30 nm)  R/A; nano
(<25 nm)  A;
silica-coated nano
(∼10 nm × 40 nm);
needle-like A (cnTiO2);
A/B TiO2 (21 nm); SiO2

NPs

Balb/c mice INH. 2 h on 4
consecutive
days or 2 h on 4
consecutive
days per week
for 4 weeks

10 ± 2 mg/m3 – – – + [22]

R, rutile; A, anatase; B, brookite; it, intranasal instillation; INH, inhalation; NPs, nanoparticles; BW,  body weight; “–”, independent factor; “+”, dependent factor.
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reated with uncoated rutile TNPs, anatase TNPs, and SiO2 NPs [22].
V Titan (rutile TiO2 modified with Al, Si, Zr and coated with polyal-
ohol) is reported to produce prolonged lung inflammation in dams
nd developmental neurotoxicity in pups [71]. In addition, it causes
cute-phase immune and inflammatory responses by altering gene
xpression [121].

Investigations based on the inherent physicochemical properi-
ies of TNPs are summarized in Table 1. The toxicity of TNPs, like
hat of other NPs, is associated with physicochemical properties,
uch as size, crystal form, surface coating, and in-solution aggrega-
ion. As the data show, nanotoxicity may  involve many factors, and

uch remains to be learned.

. Concluding remarks

Nanotoxicology has developed through three stages: descrip-
ive toxicology, mechanistic toxicology, and regulatory toxicology.
arious toxic effects of TNPs have been widely investigated in
nimals and cells using different exposure routes, doses, dura-
ion, and endpoints. The molecular mechanisms of toxicity and
he structure–toxicity relationships are just starting to emerge.

ost studies show that TNP is toxic to various experimental mod-
ls, especially when escalating doses are used. However, results
btained from research in cells and animal models cannot be
ssumed to apply directly to human beings. Therefore, efforts must
e made to develop more predictive models and conduct more
pidemiological investigations.

The ultimate goal of our efforts is to predict and control TNP
oxicity in order to assure its safe application. However, this chal-
enging goal cannot be achieved until the molecular mechanisms
f TNP toxicity and the associated structure–toxicity relationships
re elucidated. More comprehensive and quantitative models must
e built to assist in evaluating the impact of TNPs on humans. Fur-
her, approaches to modulate potential TNP toxicity, such as surface
oating modifications using nano-combinatorial chemistry meth-
ds [122,123],  should be developed.
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